Quantum mechanics. Department of Physics, 6th semester.

Lesson №1. Mathematical tool of quantum mechanics: linear algebra, theory of linear space, theory of linear operators.

- 1. Definition of linear (affine) space. Some examples of linear spaces.
- 2. Linear combination of vectors. Linear dependence and linear independence of vectors. Dimension of linear space. Basis vectors.
- 3. Euclid spaces. Dot product. Normalizing and orthogonality of vectors. Orthonormal basis. Examples of dot products.
- 4. Hilbert space. Space L^2 . Concept of full system of functions for infinite-dimensional spaces.
- 5. Definition of liner operator $\hat{L}(\alpha f + \beta g) = \alpha \hat{L}f + \beta \hat{L}g$.

Task 1. Verify linearity of the following operators (from $HKK N_2 1.1$):

- a) $\hat{I}\psi(x) = \psi(-x)$ –inversion operator;
- b) $\hat{T}_a \psi(x) = \psi(x+a)$ shift operator;
- c) $\hat{M}_c \psi(x) = \sqrt{C} \psi(Cx)$, C > 0 operator of scale conversion;
- d) $\hat{K}\psi(x) = \psi^*(x)$ operator of complex conjunction;
- e) $\hat{P}_{12}\psi(x_1,x_2) = \psi(x_2,x_1)$ permutation operator.
- 6. Ways linear operators to define: correspondence rule, integral form, matrix form.
- 7. Operator operations.
- 7.1. Unity operator, null operator.
- 7.2. Sum of operators.
- 7.3 Product of operators.
- 7.4. Commutator of two operators.
- 7.5. Inverse operator. Normal operator.

<u>Task 2.</u> Find an operator inverse to product of operators \hat{A} and \hat{B} , $(\hat{A}\hat{B})^{-1}$ –?

7.6. Definition of Hermitian conjugated operator.

Tasks 3-5. Verify, that
$$(\hat{L}^{\dagger})^{\dagger} = \hat{L}; \quad (\alpha \hat{L})^{\dagger} = \alpha^* \hat{L}^{\dagger}; \quad (\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger} \hat{A}^{\dagger}.$$

- 7.7. Definition of Hermitian (self-adjoint) operator.
- 7.8. Definition of unitary operator.

8. Eigenequation. Eigenfunctions and Eigenvalues:

$$\hat{A}\psi = \lambda \psi$$

- 8.1. Properties of Eigenfunctions and Eigenvalues of Hermitian operator.
- 8.2. Properties of eEigenvalues of unitary operator.

Task 6. Expand the brackets in operator expression
$$\left(x + \frac{d}{dx}\right)^2$$
 (*Hr. No8(a)*)

Home tasks: ΓΚΚ 1.1-1.10, Hr. №8, №9

- 1. For every operator from HKK 1.1 (see <u>task 1</u>) find Hermitian conjugated and inverse operators.
- 2. Find operators which are Hermitian conjugated to operators:

a)
$$\frac{d}{dx}$$
, $i\frac{d}{dx}$, $-\infty < x < \infty$; b) $i\frac{\partial}{\partial r}$, $0 \le r < \infty$ (HKK 1.2)

3. Prove that the following operators are Hermitian:

a)
$$\hat{L}^{\dagger}\hat{L}$$
, $\hat{L}\hat{L}^{\dagger}$, $\hat{L}+\hat{L}^{\dagger}$, $i(\hat{L}-\hat{L}^{\dagger})$ (HKK 1.3)

b)
$$\hat{A}\hat{B} + \hat{B}\hat{A}$$
, $i(\hat{A}\hat{B} - \hat{B}\hat{A})$, if \hat{A} и \hat{B} – Hermitian operators. (*HKK 1.6*)

- 4. Verify, that if \hat{C} Hermitian operator, than operator $\hat{G} = \hat{A}\hat{C}\hat{A}^{\dagger}$ is also Hermitian. (*HKK* 1.4)
- 5. Verify, that arbitrary operator can be presented as $\hat{F} = \hat{A} + i\hat{B}$, where \hat{A} and \hat{B} Hermitian operators. (*HKK 1.5*)
- 6. Operator \hat{F} is not Hermitian. In which case operator \hat{F}^2 is Hermitian? ($\Gamma KK 1.7$)
- 7. Verify, that algebraic manipulations with commutators hold for distributive property, namely that sum commutator equals to sum of $\hat{B} \left[\hat{A}, \hat{C} \right]$ (*HKK 1.8*)

$$\left[\sum_{i}\hat{A}_{i},\sum_{k}\hat{B}_{k}\right] = \sum_{i,k}\left[\hat{A}_{i},\hat{B}_{k}\right].$$

8. Verify, that

$$\left[\hat{A}\hat{B},\hat{C}\right] = \hat{A}\left[\hat{B},\hat{C}\right] + \left[\hat{A},\hat{C}\right]\hat{B};$$

$$\left[\hat{A},\hat{B}\hat{C}\right] = \hat{B}\left[\hat{A},\hat{C}\right] + \left[\hat{A},\hat{B}\right]\hat{C}; (\Gamma KK 1.9)$$

9. Prove the Jacobi identity for operator's \hat{A} , \hat{B} , \hat{C} commutators

$$\left[\hat{A}, \left[\hat{B}, \hat{C}\right]\right] + \left[\hat{B}, \left[\hat{C}, \hat{A}\right]\right] + \left[\hat{C}, \left[\hat{A}, \hat{B}\right]\right] = 0.$$

10. Expand the brackets in operator expression (Hr. No 8(b-e)):

б)
$$\left(\frac{d}{dx} + \frac{1}{x}\right)^3$$
; в) $\left(x\frac{d}{dx}\right)^2$; г) $\left(\frac{d}{dx}x\right)^2$; д) $\left[i\hbar\nabla + \vec{A}(\vec{r})\right]^2$;

e)
$$(\hat{L} - \hat{M})(\hat{L} + \hat{M})$$
.

11. Find commutators of operators:

HKK- Halitskii E.M., Karnakov B.M., Kohan V.I. Problems in Quantum Physics, 1981 *Hr.* - Hrechko, Suhakov, Tomasevich, Fedorchenko Collection of theoretical physics problems, 1984